摘要
目的 探讨生成式人工智能技术在药师继续教育个性化学习路径构建中的应用价值与实施路径。方法 分析药师继续教育的现状与挑战,构建基于生成式AI的个性化学习路径理论模型,并设计在不同专科领域的应用场景。结果 生成式AI通过动态能力画像、自适应内容生成和实时反馈机制,能够实现药师继续教育的高度个性化,有效解决传统继续教育中的同质化、更新滞后等痛点。结论 生成式AI为药师继续教育提供了创新解决方案,有助于培养高素质药学专业人才,但应采取策略继续加强数据安全、伦理规范及与传统教学的有机融合。
关键词: 生成式人工智能;药师继续教育;个性化学习路径;能力画像;自适应学习
Abstract
Objective To explore the application value and implementation pathways of generative artificial intelligence (AI) technology in constructing personalized learning pathways for pharmacist continuing education. Methods The current status and challenges of pharmacist continuing education were analyzed. A theoretical model for generative AI-driven personalized learning pathways was constructed, and application scenarios in different specialized fields were designed. Results Generative AI enables highly personalized continuing education for pharmacists through dynamic competency profiling, adaptive content generation, and real-time feedback mechanisms. It effectively addresses the limitations of traditional continuing education, such as homogenization and outdated content. Conclusion Generative AI provides an innovative solution for pharmacist continuing education, contributing to the cultivation of high-quality pharmaceutical professionals. However, strategies should be implemented to further strengthen data security, ethical norms, and organic integration with traditional teaching methods.
Key words: Generative artificial intelligence; Pharmacist continuing education; Personalized learning pathway; Competency profiling; Adaptive learning
参考文献 References
[1] 洪建治,王洪泉,叶显撑.做好临床药师继续教育工作的重要性[J].首都医药, 2000.
[2] 李馨,刘雅竹,柴劲,等."互联网+三位一体多元驱动"医院青年药师岗位胜任力持续提升项目实践[J].中国医院药学杂志, 2022, 42(16):5.
[3] 卢晓,黄全元.生成式AI驱动下医院药学实践教学改革:PBL模式的动态案例生成与智能反馈重构研究[J].科教导刊(电子版), 2025(15).
[4] 何康.作为复媒介的大语言模型——从App Store到GPT Store的技术内核与演进逻辑[J].青年记者, 2024(3):12-16.
[5] 王晖,赵贺.研究智能化软件科技助力教育现代化的路径[C]//第九届工程技术管理与数字化转型学术交流会论文集.2025.
[6] 文昱琦.面向多维生物医药数据整合挖掘的人工智能关键算法与应用研究[D].军事科学院,2023.
[7] 李心蓓 刘兰 段雨迪 王竹新 王娟.基于多模态数据的人工智能教育大脑构建和应用场景探究[J].数字教育, 2024, 10(3):48-55.
[8] 王查娜.AI制药场景创新前户数据隐私与安全成"痛点力"[J].中国科技财富, 2024(10):9-10.
[9] 贺菁希,任吴炯,夏以柠.有图不一定有真相:AI大模型应用的多模态虚假信息问题分析[J].现代视听, 2024(8):36-41.
[10] 张世海,吴银宝,王建武.AI驱动的多模态数字化教学与传统教学模式的比较研究[J].中国农业教育, 2025(2).
[11] 刘艳.AI助教与传统教育融合:Linux系统应用教学改革探究[J].新潮电子, 2025(14).