期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Journal of Education. 2025; 7: (6) ; 21-25 ; DOI: 10.12208/j.ije.20250215.

Exploring the innovation of public diplomacy discourse teaching empowered by python
Python赋能外宣话语教学创新探索

作者: 胡刘坤 *

南昌大学外国语学院 江西南昌

*通讯作者: 胡刘坤,单位:南昌大学外国语学院 江西南昌;

发布时间: 2025-06-22 总浏览量: 29

摘要

在全球化与数字化深度融合的背景下,外宣话语教学对国家文化软实力建设至关重要。传统教学模式因资源局限和技术滞后,难以培养学生适应数字化传播环境的能力。本研究聚焦 Python语言在外宣话语教学中的应用,通过理论建构与实践探索,揭示其在数据驱动教学资源拓展、个性化学习路径规划及跨文化交际能力提升等方面的独特优势。Python凭借网络爬虫、自然语言处理及数据可视化等技术,可实现多源外宣语料的自动化收集与定制化语料库构建,结合机器学习算法为学生提供精准化学习支持,并通过虚拟场景模拟强化跨文化话语实践。本研究既拓展了外宣话语教学与信息技术融合的理论边界,也为提升国际传播人才培养效能提供了实践路径。

关键词: 外宣话语;Python;教学创新

Abstract

Against the backdrop of deep integration of globalization and digitization, public diplomacy discourse teaching is crucial for building a nation's cultural soft power. Traditional teaching models, constrained by limited resources and lagging technology, struggle to cultivate students' capabilities to adapt to digital communication environments. This study focuses on the application of Python in public diplomacy discourse teaching. Through theoretical construction and practical exploration, it reveals the unique advantages of Python in expanding data-driven teaching resources, planning personalized learning paths, and enhancing cross-cultural communication skills. Leveraging technologies such as web crawling, natural language processing (NLP), and data visualization, Python enables automated collection of multi-source public diplomacy corpus and construction of customized corpora. By integrating machine learning algorithms, it provides students with precise learning support, while reinforcing cross-cultural discourse practice through virtual scenario simulation. This research not only expands the theoretical boundaries of integrating public diplomacy discourse teaching with information technology but also offers practical pathways for improving the effectiveness of international communication talent cultivation.

Key words: Public diplomacy discourse; Python; Teaching innovation

参考文献 References

[1] 陈卫星. 国际传播秩序的重构与中国话语体系的建构[J]. 新闻与传播研究, 2017 (5), 5–18.

[2] 陈汝东. 跨文化传播中的话语策略[J]. 国际新闻界, 2018(11), 22–38.

[3] 费尔克拉夫.话语与社会变迁(殷晓蓉译)[M]. 北京:华夏出版社. 2015

[4] 胡正荣. 跨文化传播理论与数字技术的融合路径[J]. 新闻大学, 2021 (1), 1–10.

[5] 李战子. 外宣话语研究的新维度[J]. 外语教学, 2020(5), 1–6.

[6] 李阳. 信息技术在外语教学中的应用现状与反思[J]. 外语界, 2024 (2), 42–50.

[7] 刘刚. 网络爬虫技术在外宣语料收集中的应用[J]. 现代教育技术, 2023(7), 54–61.

[8] 吕叔湘. 汉语语法分析问题[M].北京:商务印书馆. 2021

[9] 王莉. Python 在翻译教学中的实践探索[J]. 中国翻译, 2023 (3), 112–118.

[10] 王宁. 虚拟现实技术在外语教学中的应用前景[J]. 外语电化教学, 2022 (4), 3–9.

[11] 张红.  Python 辅助英语语法教学的行动研究[J]. 外语界, 2022 (6), 78–85.

[12] 周志华. 机器学习[M].北京:清华大学出版社. 2016

[13] BIRD, S., KLEIN, E., & LOPER, E. Natural Language Processing with Python[M]. O’Reilly Media. 2009

[14] BLEI, D. M., NG, A. Y., & JORDAN, M. I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003(3), 993–1022.

[15] BRANSFORD, J. D., BROWN, A. L., & COCKING, R. R. How People Learn: Brain, Mind, Experience, and Schoo[M] l. National Academies Press. 2000

[16] CHOLLET, F. Deep Learning with Python[M]. Manning Publications. 2017

[17] FAIRCLOUGH, N. Analysing Discourse: Textual Analysis for Social Research[M]. Routledge. 2003

[18] GOODFELLOW, I., BENGIO, Y., & COURVILLE[M], A. Deep Learning. MIT Press. 2016

[19] HALL, E. T. Beyond Culture[M]. Anchor Press. 1976

[20] HOFSTEDE, G. Culture’s Consequences: International Differences in Work-Related Values[M].Sage Publications. 1980

[21] HUNTER, J. D. Matplotlib: A 2D graphics environment[J]. Computing in Science & Engineering, 2007(3), 90–95.

[22] KIETZMANN, J. H., HERMKENS, K., MCCARTHY, I. P., & SILVESTRE, B. S. Social media? Get serious! Understanding the functional building blocks of social media[J]. Business Horizons, 2011(3), 241–251.

[23] KITCHIN, R. Big data, new epistemologies and paradigm shifts[J]. Big Data & Society, 2014(1), 2053951714528481.

[24] LAVE, J., & WENGER, E. Situated Learning: Legitimate Peripheral Participation[M]. Cambridge University Press. 1991

[25] LAKOFF, G., & JOHNSON, M. Metaphors We Live By[M]. University of Chicago Press. 1980

[26] PANG, B., & LEE, L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008,2(1–2), 1–135.

[27] PRENSKY, M. Digital natives, digital immigrants[J]. On the Horizon, 2001,9(5), 1–6.

[28] SINCLAIR, J. Corpus, Concordance, Collocation[M]. Oxford University Press. 1991

[29] VAN DIJK, T. A. Discourse as Structure and Process[M]. Sage Publications. 1997

[30] VYGOTSKY, L. S. Mind in Society: The Development of Higher Psychological Processes[M]. Harvard University Press. 1978

[31] WENGER, E. Communities of Practice: Learning, Meaning, and Identity[M]. Cambridge University Press. 1998

[32] WANG, Y., et al. Knowledge graph construction with heterogeneous information sources[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10), 2324–2337.

引用本文

胡刘坤, Python赋能外宣话语教学创新探索[J]. 国际教育学, 2025; 7: (6) : 21-25.