期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Journal of Education. 2025; 7: (6) ; 39-42 ; DOI: 10.12208/j.ije.20250219.

AI-empowered multidimensional evaluation of TCM English speech courses
AI赋能中医英语演讲课程多元评价

作者: 陈滢竹, 颜梦佳, 王武杰 *

广西中医药大学 广西南宁

*通讯作者: 王武杰,单位:广西中医药大学 广西南宁;

发布时间: 2025-06-25 总浏览量: 22

摘要

本研究聚焦大语言模型在中医英语演讲课程评价中的应用,探索其对提升教学质量、推动中医文化国际传播的重要意义。研究通过构建 “同伴互评辅助者”、“演讲逻辑分析师”、“语言准确性校验者”、“跨文化表达评估师”、“个性化反馈生成器”等五大核心角色,将大语言模型深度融入课程评价体系。研究结果表明,大语言模型可通过生成标准化互评框架提升同伴互评客观性;利用语义分析优化演讲逻辑结构;依托权威语料库保障中医英语术语准确性;基于跨文化语料学习增强文化表达适配性;并通过整合多维度数据实现个性化反馈。该研究为中医英语教学评价的智能化转型提供理论支撑与实践路径,有效推动中医文化国际传播人才培养的专业化发展。

关键词: AI赋能;中医英语演讲课程;多元评价

Abstract

This study focuses on the application of large language models (LLMs) in the evaluation of TCM English speech courses, exploring their significance in enhancing teaching quality and promoting the international dissemination of traditional Chinese medicine (TCM) culture. By establishing five core roles—“Peer Assessment Facilitator,” “Speech Logic Analyst,” “Language Accuracy Checker,” “Cross-Cultural Expression Evaluator,”and “Personalized Feedback Generator”—the research deeply integrates LLMs into the course evaluation system. Findings indicate that LLMs can enhance the objectivity of peer assessment by generating standardized evaluation frameworks; optimize speech logic structures through semantic analysis; ensure the accuracy of TCM English terminology by relying on authoritative corpora; improve the adaptability of cultural expression based on cross-cultural corpus learning; and deliver personalized feedback by integrating multi-dimensional data. This research provides both theoretical support and practical pathways for the intelligent transformation of TCM English teaching evaluation, effectively advancing the professional development of talent cultivation for international TCM cultural dissemination.

Key words: AI empowerment; TCM English speech courses; Multidimensional evaluation

参考文献 References

[1] Devlin, J.,M. Chang,K. Lee & K. Toutanova. 2018.BERT: Pre-training of deep bidirectional transformers for language understanding [OL]. (2024-1-24) [2025-6-25]. 

https://arxiv.org/abs/1810.04805 

[2] 许家金,赵冲.大语言模型在英语教学中的角色[J].外语教育研究前沿,2024,7(01):3-10+90.

[3] BARAGASH R S,AL-SAMARRAIE H. Blended learning: investigating the influence of engagement in multiple learning delivery modes on students'performance[J]. Telematics and Informatics,2018, 35(7): 2082-2098.

[4] 张姣,刘苗苗.技术创新视角下高校智能化教学评价变革的逻辑与行动路径[J/OL].现代教育管理,1-9[2025-06-25]. https://doi.org/10.16697/j.1674-5485.2025.07.011.

[5] 张昱.人工智能赋能课堂教学:价值意蕴、现实挑战与实践路径[J].教育理论与实践,2025,45(18):51-55.

[6] 孔维梁,于晓利,韩淑云,等. 人工智能赋能的可信同伴互评模型构建与验证 [J]. 现代远程教育研究, 2023, 35 (03): 93-101+112.

[7] 刘志军,陈雪纯.数智化时代教学评价的价值隐忧与重塑[J].课程.教材.教法,2024,44(10): 67-73.

[8] 刘露. 中医翻译能力构建及教学策略研究 [J]. 时珍国医国药, 2018, 29 (08): 1994-1996.

引用本文

陈滢竹, 颜梦佳, 王武杰, AI赋能中医英语演讲课程多元评价[J]. 国际教育学, 2025; 7: (6) : 39-42.